The 1491 Decade Inductor is an assembly of several decade inductor units in a single metal cabinet. The units have no electrical connection to the panel, but a separate ground terminal is provided, which can be connected to the adjacent low terminal, leading to the smallest decade.

Features:

- Shielded toroidal cores for low mutual inductance and minimal effect from external field
- Sealed against moisture for long-term stability
- Excellent as a moderately accurate inductance standard
- High Q, 200 and higher

1491 High Accuracy Decade Inductor

SPECIFICATIONS

Accuracy

Inductance per step	Accuracy	Test frequency	Test voltage
$\mathbf{1 0 0} \boldsymbol{\mu H}$	$\pm 2 \%$	1000 Hz	10 mV
$\mathbf{1} \mathbf{~ m H}$	$\pm 2 \%$	1000 Hz	10 mV
$\mathbf{1 0} \mathbf{~ m H}$	$\pm 1.6 \%$	500 Hz	20 mV
$\mathbf{1 0 0} \mathbf{~ m H}$	$\pm 0.8 \%$	200 Hz	20 mV
$\mathbf{1} \mathbf{H}$	$\pm 0.8 \%$	100 Hz	40 mV

Zero inductance
Approximately $1 \mu \mathrm{H}$
Maximum voltage
500 Vrms
1491 switches safely break the circuit at 500 V if turned rapidly, but voltages above 150 V may cause destructive arcing with the switch between detent positions.
dc Resistance
Approximately 45Ω per henry

Connection terminals

Two, 5-way, gold-plated, tellurium-copper binding posts with low thermal emf and low resistance, plus separate binding post for ground.

Temperature coefficient

Approximately $-25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ between 16° and $32^{\circ} \mathrm{C}$.
Mechanical
Dimensions: $43.2 \mathrm{~cm} W \times 22.3 \mathrm{~cm} \mathrm{~W}$ x 16.6 cm D
(17" x 8.75 " x 6.5")
Weight: $10.5 \mathrm{~kg}(23 \mathrm{lb})$

ORDERING INFORMATION

Quality factor \mathbf{Q}

Variation of Q for maximum inductance at low excitation levels. Dashed lines correspond to use with chassis floating.

$$
\begin{aligned}
& \mathrm{DD}-1 \mathrm{mH} \text { Steps } \\
& \mathrm{E}-0.01 \mathrm{H} \text { Steps } \\
& \mathrm{F}-0.1 \mathrm{H} \text { Steps } \\
& \mathrm{G}-1 \mathrm{H} \text { Steps } \\
& \mathrm{H}-10 \mathrm{H} \text { Steps }
\end{aligned}
$$

Change of inductance with current
To minimize the change in inductance, keep current low as shown. Contact IET for more details.

Inductance per step	Increase in inductance	Switch setting $\mathbf{2 , 3 , 4}$			
$\mathbf{1 0 0} \boldsymbol{\mu H}$	0.10%	141 mA	100 mA	63 mA	Max
current					

Note: At currents higher than those listed, the inductors begin to saturate and accuracy degrades further. For best accuracy, use at low current.

1491-D	Decade inductor, 4 decades, 11.11 H total inductance, 1 mH per step
1491-G	Decade inductor, 5 decades, 11.111 H total inductance, $100 \mu \mathrm{H}$ per step

